

AT4079B GUI User Manual

8-Lane | 1.25-30 GBaud | Bit Error Ratio Tester 400G | NRZ & PAM4

AT4079B GUI User Manual-rev0.4 (GB 20210310a) March 2021

Notices

Copyright © MultiLane Inc. All rights reserved. Licensed software products are owned by MultiLane Inc. or its suppliers and are protected by United States copyright laws and international treaty provisions.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, or subparagraphs (c)(1) and (2) of the Commercial Computer Software -- Restricted Rights clause at FAR 52.227-19, as applicable.

MultiLane Inc. products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specifications and price change privileges reserved.

General Safety Summary

Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. To avoid potential hazards, use this product only as specified.

Only qualified personnel should perform service procedures.

While using this product, you may need to access other parts of the system. Read the General Safety Summary in other system manuals for warnings and cautions related to operating the system.

To Avoid Fire or Personal Injury

Use Proper Power Cord. Only use the power cord specified for this product and certified for the country of use.

Observe All Terminal Ratings. To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the product manual for further ratings information before making connections to the product.

Do not apply a potential to any terminal, including the common terminal that exceeds the maximum rating of that terminal.

Do Not Operate Without Covers.

Do not operate this product with covers or panels removed.

Avoid Exposed Circuitry. Do not touch exposed connections and components when power is present.

Do Not Operate with Suspected Failures.

If you suspect there is damage to this product, have it inspected by qualified service personnel.

Do Not Operate in Wet/Damp Conditions. Do Not Operate in an Explosive Atmosphere. Keep Product Surfaces Clean and Dry

Caution statements identify conditions or practices that could result in damage to this product or other property.

CONTENTS

CONTENTS	3
INTRODUCTION	5
API and SmarTest Documents	5
Product Software	
Installation	
First Steps Connect through Ethernet:	
GUI Overview	8
Instrument Connect Field	8
	8
PLL Lock and Temperature Status Field	8
Reading the installed Firmware Revision	9
Line Rate Configuration (Applies to all channels at once)	9
Mode & Clock Out Settings (Apply to all channels at once)	10
Pre-Channel Settings	11
Taking Measurements	
Bit Error Ratio Reading	15
BER Control	15
BER Table of Results	15
BER Graph	16
Histogram Analysis	16
Signal to Noise Ratio Analysis	16
Log file System	17
Saving and Loading Settings	17
How to Change IP Address and Update Firmware	

Table of Figures

Figure 1: Connect Via Ethernet	7
Figure 2: AT4079B GUI	8
Figure 3: Instrument Connect Field	8
Figure 4: PLL Lock and Temperature Status	8
Figure 5: Reading the installed Firmware Revision	9
Figure 6: Line Rate Configuration	9
Figure 7: Default Inner and Outer settings of 1000 and 2000	14
Figure 8: Outer Eye is set 1600; Inner eye kept at 2000	14
Figure 9: BER Control panel	15
Figure 10: BER Table of Results	15
Figure 11: BER Graphs	16
Figure 12: PAM Histogram	
Figure 13: SNR ratio for PAM signal	

INTRODUCTION

This is the user operation manual for the AT4079B. It covers the installation of its software package and explains how to operate the instrument for pattern generation and error detection; how to control the clocking system, inputs/outputs and all the available measurements.

Acronym	Definition
BERT	Bit Error Rate Tester
API	Application Programming Interface
NRZ	Non-Return to Zero
GBd	Gigabaud
PLL	Phase-Locked Loop
PPG	Pulse Pattern Generator
GHz	Gigahertz
PRD	Product Requirements Document
1/0	Input/Output
R&D	Research & Development
HW, FW, SW	Hardware, Firmware, Software
GUI	Graphical User Interface
ATE	Automatic Test Equipment
HSIO	High-Speed I/O

API and SmarTest Documents

- This manual supports the instrument AT4079B and it is compatible with the Advantest V93000 HSIO test head extender frame/twinning.
- All APIs are available for Linux and tested under Smartest 7. For the list of APIs and how to use them please refer to the "API" folder on the AT4079B webpage.
- This manual does not explain how to operate the instrument using SmarTest environment. Refer to Advantest's website below for SmarTest document noting that it may change without notice and also require login privileges provided through Advantest.

https://www.advantest.com/service-support/ic-test-systems/software-information-anddownload/v93000-software-information-and-download

Product Software

The instrument includes the following software:

AT4079B GUI.

Instrument GUI runs on Windows XP (32/64 bit), Windows 7,8 and 10.

NOTE. These applications require the Microsoft .NET Framework 3.5. If the Microsoft.NET Framework 3.5 is needed, it can be downloaded through this link: http://download.microsoft.com/download/2/0/e/20e90413-712f-438c-988efdaa79a8ac3d/dotnetfx35.exe.

For more products updates, check the following webpage: https://multilaneinc.com/products/at4079b/

Minimum PC Requirements

The Windows PC properties for the AT4079B GUI application should meet the following specifications:

- Windows 7 or greater
- Minimum 1 GB RAM
- 1 Ethernet card to establish connection with the device
- USB connector
- Pentium 4 processor 2.0 GHz or greater
- .NET Framework 3.5 sp1

NOTE: It is recommended to connect the BERT via Ethernet to one PC only to prevent conflict from multiple user commands.

NOTE: It is not recommended to hook up the instrument to a slow network or to connect to it through WiFi

Installation

This section addresses installation and bring-up of the instrument. It is divided in two main sections:

- System start-up
- How to connect to the instrument

First Steps

When you first receive the instrument, it has a pre-configured IP address from the factory. This IP address is printed on a label on the instrument. You may choose to keep this IP or to change it. If you need to change the IP address refer to "How to change IP and update firmware" section.

Connect through Ethernet:

Connect the PC to the backplane via the RJ45 connector through an Ethernet cable to be able to control it.

To connect via Ethernet, the IP address of the board is required.

To learn more options on how to connect the Ethernet cable go to the section Connect through an Ethernet Cable.

Note that no drivers are required; you simply should know the current board IP address, you need to enter it in the text box next to the IP label shown in the below picture, then click on the connect button.

Figure 1: Connect Via Ethernet

- You are now connected.
- Once connected, the **Connect** button turns into **Disconnect**.
- To make sure that you are connected, you can also ping your device.

The instrument is now powered up and connected through the right IP address. Next, you need to configure the signal generated.

GUI Overview

Although the AT4079B is an ATE type of instrument, it can be used as any other Multilane BERT and can be controlled from the general BERT GUI for Windows. This is for instance useful when troubleshooting a setup. The general BERT GUI can be downloaded from the company website, under the download section of the AT4079B.

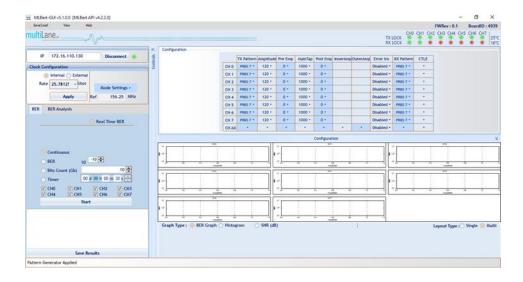


Figure 2: AT4079B GUI

In your instrument's GUI, there are several control fields that are each explained below.

Instrument Connect Field

Figure 3: Instrument Connect Field

The first thing you want to do is to make sure you are connected to the instrument. If you are, the connect button will read Disconnect and the green LED lights up.

PLL Lock and Temperature Status Field

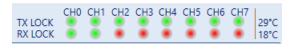


Figure 4: PLL Lock and Temperature Status

Keep an eye on the LEDs and temperature readings on this field. TX Lock means that the PLL of the PPG is locked. RX lock goes green only if a signal of correct polarity and PRBS kind is detected on the error-detector.

If the temperature reaches 65°C, the electronics will auto shut off.

Reading the installed Firmware Revision

The installed firmware version is displayed in the upper right corner of the GUI.

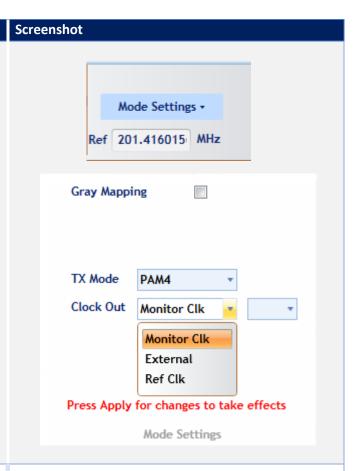
FWRev: 0.1 BoardID: 4939

Figure 5: Reading the installed Firmware Revision

Line Rate Configuration (Applies to all channels at once)

Figure 6: Line Rate Configuration

This is where you set the bitrate for all 8 channels by typing in the desired rate. The drop-down menu lists a shortcut to the most widely used bitrates, however you are not limited only to that list. You can also select the clock input. The clock is internal by default. You should only change to external clock feed in when you need to synchronize two or more AT4079Bs to each other in a slave-master fashion; In that case you connect the clocks in daisy chain. After changing from internal to external clock and vice versa, you have to click apply for changes to take effect (this takes a few seconds).



Description

Mode & Clock Out Settings (Apply to all channels at once)

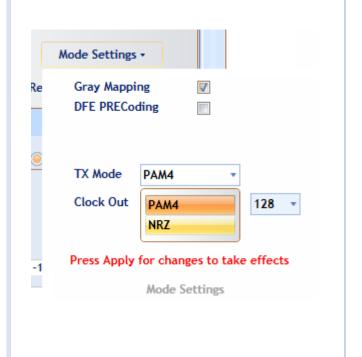
The "Ref" denotes the frequency of the clock output. This is a function of the bitrate and will vary according to your clock-out settings under the "Mode" menu. Knowing the clock frequency being output by the BERT is helpful when you want to trigger an oscilloscope.

Some oscilloscopes require a clock frequency above 2 GHz. To get the AT4079B to output that, go under mode settings and select the Clock out to be "Monitor". Choose the denominator so that the result is within the scope range.

To switch between NRZ and PAM-4 coding, use the TX Mode setting, then click Apply.

The options Gray Mapping and DFE pre-coding are only available in PAM4 mode.

DFE Pre-coding sends a pre-amble for a DFE receiver to sync to before the actual PRBS pattern is transmitted, to avoid DFE error propagation. The decoder implements a 1+D scheme in response to an $x = \frac{1}{1+D}$ encoding. Currently the DFE precoding is automatic and not user selectable.

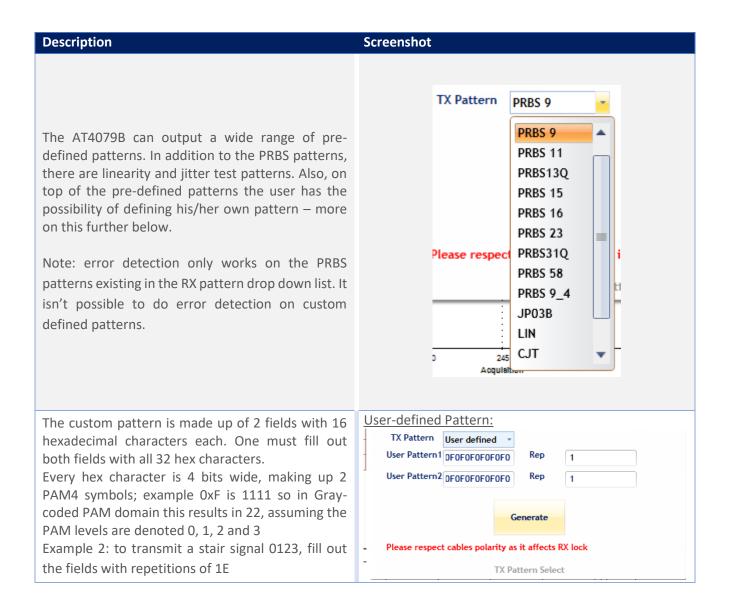

Gray Mapping enables use of PRBSxxQ defined in IEEE802.3bs. When Gray mapping is enabled, the PRBS13 and PRBS31 under the pattern select menu turn into PRBS13Q and PRBS31Q respectively. Gray mapping basically re-arranges the symbol mapping to the following:

 $00 \rightarrow 0$

 $01 \rightarrow 1$

 $11 \rightarrow 2$

 $10 \rightarrow 3$



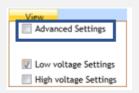
Pre-Channel Settings

	TX Pattern	Amplitude	Pre Emp	MainTap	Post Emp	InnerAmp	OuterAmp	Error Ins	RX Pattern	CTLE
CH 0	PRBS 7 *	120 *	0 +	1000 *	0 +	1000 *	2000 *	Disabled *	PRBS 7 *	*
CH 1	PRBS 7 *	120 -	0 -	1000 -	0 +	1000 -	2000 -	Disabled *	PRBS 7 *	
CH 2	PRBS 7 *	120 *	0 -	1000 -	0 +	1000 *	2000 -	Disabled *	PRBS 7 *	*
CH 3	PRBS 7 *	120 -	0 +	1000 *	0 +	1000 -	2000 -	Disabled *	PRBS 7 *	*
CH 4	PRBS 7 *	120 -	0 +	1000 *	0 +	1000 -	2000 *	Disabled *	PRBS 7 *	•
CH 5	PRBS 7 *	120 -	0 +	1000 -	0 +	1000 -	2000 -	Disabled *	PRBS 7 *	*
CH 6	PRBS 7 *	120 -	0 +	1000 -	0 *	500 *	2000 +	Disabled *	PRBS 7 *	*
CH 7	PRBS 7 *	120 -	0 -	1000 *	0 -	1000 *	2000 -	Disabled *	PRBS 7 *	*
CH AII		•	•			1500 -		Disabled *	*	

You can adjust these settings on a per channel basis. These are:

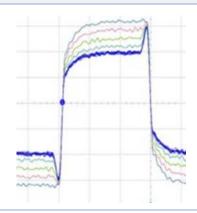
In the RX Pattern menu, one can browse all the patterns with which error detection is possible. Note that TX and RX pattern must be the same to acquire RX lock and consequently be able to do measurements. Also the pattern polarity is very important and makes all the difference between having RX PLL lock or no lock at all. You can ensure correct polarity by connecting the TX-P side of the cable to the RX-P and the TX-N to the RX-N. if you do not respect this rule, you can still invert polarity from the GUI on the RX side only.

Inner and Outer eye level controls trim the high and low values of the middle PAM eye.


Possible control values range from 500 to 1500 for the inner eye control and from 1500 to 2000 for the outer eye. Optimal values are typically in the middle of the range. Example of tweaking the Outer eye settings is shown below

The default amplitude control is calibrated in millivolt values but does not allow you to change the equalizer settings. If you need to change the FFE tap settings, please go to View then enable 'Advanced Settings'. This enables you to control pre- and post-emphasis values for each channel, but amplitude values will not be shown in millivolt. By default, three taps are shown and can be edited. Think of the amplitude as a digital equalizer with main tap, pre-cursor (pre-emphasis) and postcursor (post-emphasis). In the regular case, preand post-cursors are set to zero; the amplitude is controlled using the main tap. The main, pre- and post-taps use digital values ranging between -1000 and +1000. Increasing and decreasing the pre and post cursors will also affect the amplitude. Please ensure that the sum of pre-, post and main cursors is ≤ 1000 to have optimal performance. If the sum of taps exceeds 1000, linearity of the TX signal cannot be maintained.

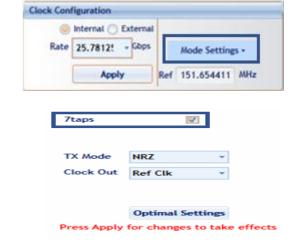
RX Pattern PRBS 9 RX Invert PRBS 7 PRBS 9 PRBS 11 PRBS 13 PRRS 15 PRBS 16 PRBS 23 PRBS 31

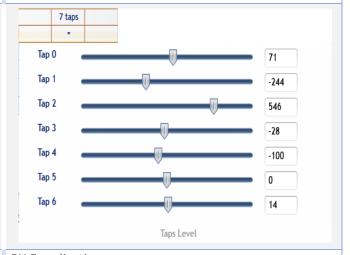

Inner Eye	Outter Eye
1000 -	2000 -
1000 -	2000 -
1000 -	2000 -
1000 -	2000 -

Amplitude Settings:

Pre Emp	MainTap	Post Emp
0 +	1000 +	0 +
0 +	1000 -	0 +
0 -	1000 -	0 +
0 -	1000 -	0 +
0 +	1000 -	0 +

Pre-cursor effect on a pulse




Post-cursor effect on a pulse

The user can also edit a 7 taps coefficients instead of just 3 taps by clicking on Mode Settings and then checking the box of 7taps 1

7 Taps Settings:

After applying the settings, the seven-tap control will be available for editing under the amplitude menu. Any one of the 7 taps can be defined as main tap; in this case, taps preceding it will be precursors. Likewise, taps following the main tap will be post-cursors.

The slicer is the default mode.

The reflection canceller consumes more power but is useful for strenuous channels containing transitions of impedance

RX Equalization DSP mode Slicer for non strenuous li Slicer for non strenuous links Slicer with reflection canceller Please click the "Set" button to apply changes. Set

DFE Level

Error insertion is carried out on a block by block basis. Each block is 64 bits, divided into 32 MSBs and 32 LSBs.

Error Insertion Error Ins Enabled *

Example Inner and Outer Settings Effect:

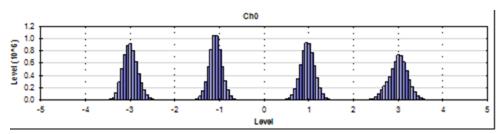


Figure 7: Default Inner and Outer settings of 1000 and 2000

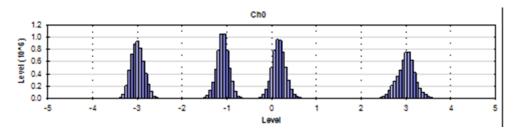


Figure 8: Outer Eye is set 1600; Inner eye kept at 2000

Taking Measurements

Bit Error Ratio Reading

To be able to start BER measurements, the instrument ports should be in the loopback mode, which means TX port should be connected to the RX port and the PPG and ED patterns should match. One does not necessarily need to supply a PRBS from the same physical instrument – the source can be a different instrument and the error-detector of the AT4079B can derive its own clock from the received data (no need for a separate clock link). However, if Gray coding is used in the source, one should tell the receiver to expect Gray coding as well. If there is a match in pattern, polarity, and coding but still no lock, there could be an MSB/LSB swap on one side.

BER Control

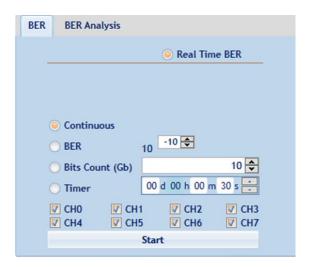


Figure 9: BER Control panel

A BER measurement can run in continuous mode and will not stop until the user intervenes and clicks the stop button. BER can also be set to run unit a target value is reached or until a certain number of bits has been transmitted (units of 10 gigabits). The Timer lets the user set a time for the BER to stop.

BER Table of Results

The summary of BER measurements is shown in the following pane:

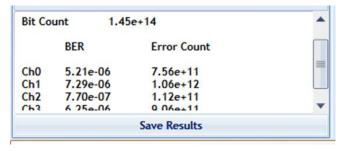


Figure 10: BER Table of Results

BER Graph

Plots BER values collected on the graph

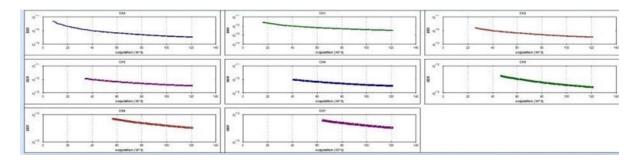
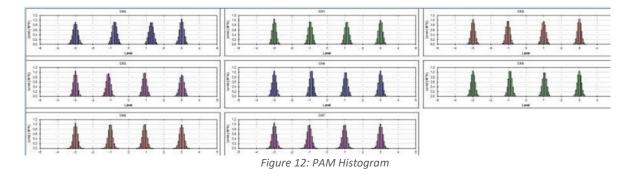



Figure 11: BER Graphs

Histogram Analysis

The histogram is the tool of choice to troubleshoot the link. You can think of it as a scope built into the receiver and it works even if you do not have pattern lock. For both NRZ and PAM signals, the histogram graph is shown as follows:

- The thinner the peaks the better the performance of the PAM signal and the less the jitter. These peaks can be enhanced using the pre/post-emphasis available.
- The same analogy applies as that of the PAM histogram.

Signal to Noise Ratio Analysis

SNR is a quantitative way to measure the strength of the received signal - it is given in dB.

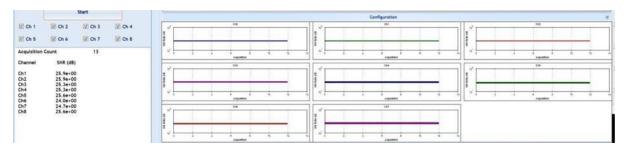


Figure 13: SNR ratio for PAM signal

Log file System

In the AT4079B BERT there is a log file system, where every exception handled or unhandled by the GUI will be saved. After the first run, the GUI creates a file in the main directory/exception log, and saves all the existed exceptions. In case the user had a problem with the software, he can send the exception file to our team.

Note: the exception file will be deleted automatically after every 1 week of work.

Saving and Loading Settings

The instrument always saves the last used settings in non-volatile memory. These settings are automatically restored the next time you connect to the BERT. In addition, you can create and save your own set of setup files and can revert to them when needed. Look for the Save/Load menu in the menu bar of the GUI.

How to Change IP Address and Update Firmware

For info regarding changing IP address and updating firmware of the AT4079B, kindly download "Maintenance" folder from https://multilaneinc.com/products/at4079b/. The folder consists of the following:

- ML Maintenance GUI
- **USB Driver**
- **User Guide**

North America

48521 Warm Springs Blvd. Suite 310 Fremont, CA 94539 USA +1 510 573 6388

Worldwide

Houmal Technology Park Askarieh Main Road Houmal, Lebanon +961 81 794 455

Asia

14F-5/ Rm.5, 14F., No 295 Sec.2, Guangfu Rd. East Dist., Hsinchu City 300, Taiwan (R.O.C) +886 3 5744 591